

PBA-003-1275001 Seat No. _

M. Sc. (Electronics) (Sem. V) (CBCS) Examination November / December - 2018

Basic Concepts of Control Systems: Paper - 17

Faculty Code: 003

Subject Code: 1275001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- Answer the following questions in brief: (any Seven) 1 14
 - Briefly describe properties of linear time-invariant system.
 - (2)Define Laplace transform.
 - State and prove initial value theorem.
 - Define a 2nd order system. Also mention suitable (4) examples.
 - What is an open loop control system? (5)
 - What are state variables? (6)
 - (7)Reduce the block-diagram to minimum:

Find inverse Laplace of the function given as: (8)

$$F(s) = \frac{s+3}{(s+2)(s+1)}$$

- How can one define a linear time-varying system?
- (10) Derive Laplace transform of a pulse function.
- 2 Attempt any two of the following questions:

14

Derive state-space equation for a spring-mass-dashpot system shown in figure below.

1

- (2) Mention and explain all rules to manipulate block-diagrams.
- (3) Explain the step-response of second order system (servo motor) with necessary equations.
- **3** Answer the following questions:

14

5

- (1) Describe in brief unit-step, unit-ramp and unitimpulse functions. Derive Laplace transforms of each.
- (2) Reduce the following block diagram.

(3) State and prove the real integration theorem.

OR

3 Answer the following questions:

14

5

4

4

(1) For a spring-mass mechanical system shown in figure below derive the state space equations.

- (2) Define delay time, rise time, peak time, maximum overshoot and settling time for a transient response with necessary diagram.
- (3) Reduce the block diagram to minimum.

- 4 Answer the following questions:
 - (1) Derive state space representation for the system in the block diagram.

(2) For the system shown in figure, determine the values $\mathbf{5}$ of K and velocity feedback constant K_h so that maximum overshoot in unit-step response is $\mathbf{0.2}$ and peak time is 1 sec. For the same K and K_h ; determine rise time and settling time. $\left(J = 1 \, kgm^2 \, \& \, B = 1 \, Nm/rad/\sec\right)$

- (3) Explain pulse and impulse functions in detail.
- 5 Answer any two of the following questions: 14
 - (1) Derive the transient response of a first order system for unit step, unit ramp and unit impulse input. Also discuss its inference.
 - (2) Derive the mathematical model of a liquid level system without interaction as shown below.

4

(3) What will be effect of multiplication by e^{-at} and change of time scale on Laplace transform of a function, f(t) Also find inverse Laplace transform of,

$$F(s) = \frac{5(s+7)}{(s+1)^2(s+2)}$$

(4) Derive the mathematical model of a thermal system shown below.

